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We study structural properties of growing networks where both addition and deletion of nodes are
possible. Our model network evolves via two independent processes. With rate r, a node is added
to the system and this node links to a randomly selected existing node. With rate 1, a randomly
selected node is deleted, and its parent node inherits the links of its immediate descendants. We
show that the in-component size distribution decays algebraically, ck ∼ k−β , as k → ∞. The
exponent β = 2 + (r − 1)−1 varies continuously with the addition rate r. Structural properties of
the network including the height distribution, the diameter of the network, the average distance
between two nodes, and the fraction of dangling nodes are also obtained analytically. Interestingly,
the deletion process leads to a giant hub, a single node with a macroscopic degree whereas all other
nodes have a microscopic degree.
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I. INTRODUCTION

Idealized models of random networks provide an im-
portant tool for characterizing real-world networks such
as communication, infrastructure, and social networks
[1–3]. For example, the emergence of hubs in heteroge-
neous networks can be reproduced through a “rich-gets-
richer” mechanism. This phenomenon arises in networks
that grow via preferential attachment [4–6].

Most network growth models are based upon sequen-
tial addition of nodes and subsequent attachment to ex-
isting nodes according to a prescribed mechanism. This
framework does not allow for removal of nodes. In re-
ality, there are two types of networks. One type of net-
works including for example citation networks may only
expand, while another type of networks such as friend-
ship networks may either expand or contract. Indeed,
individuals may join or leave a social group [7, 8]. The
same is true for technological networks such as the world-
wide-web because websites may disappear.

There is substantial theoretical understanding of the
structure of strictly expanding networks, but much less
is known about networks that may also contract [7–13].
In the latter case, it is typically impossible to construct
closed equations for quantities such as the degree distri-
bution because removal of nodes generates memory or
correlations.

In this paper, we introduce a simple network growth
process with addition and deletion of nodes and show
that it is possible to obtain closed equations for several
structural properties of the network. In our growing net-
work model, nodes may be added or deleted. When a
node is added to the network, it is attached to a ran-
domly selected existing node. When a node is deleted,
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its daughters are attached to its parent. This process is
relevant for phylogenetic trees, namely trees that docu-
ment the ancestries of distinct biological species [14–16]
because in the process of evolution, mutation events gen-
erate new nodes while extinction events result in deletion
of existing nodes [17–21].

We first investigate the in-component size distribu-
tion and show that this quantity obeys a closed evolu-
tion equation. We analytically obtain many characteris-
tics of this distribution including the generating function,
the moments, and the tail behavior. The in-component
size distribution decays algebraically and the character-
istic exponent varies continuously with the addition rate.
Such behavior is in contrast with preferential attachment
networks where this exponent is fixed.

Next, we obtain closed equations for the height dis-
tribution that characterizes the distance between a node
and the root. This distribution obeys Poisson statistics.
Other structural characteristics such as the diameter of
the network and the degree of the most connected node
follow directly from this quantity. In general, deletion
leads to a condensation phenomena where a single node
is connected to a finite fraction of all nodes, while the
rest of the nodes have only a finite degree. We stress
that condensation does not occur in the absence of dele-
tion.

The rest of this paper is organized as follows. The
addition-deletion process is introduced in section II. The
in-component size distribution and related quantities
such as the fraction of dangling nodes are discussed in
section III. Next, in section IV, the height distribution
and related quantities including the diameter are de-
scribed. The degree distribution is analyzed using an
approximate theory and numerical simulations in section
V. Section VI contains a brief summary. Finally, appen-
dices A and B contain several technical derivations.
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FIG. 1: Illustration of the node addition process.

FIG. 2: Illustration of the node deletion process.

II. THE ADDITION-DELETION PROCESS

In the addition-deletion process, initially there is one
seed node, and then, the network grows via addition of
nodes and shrinks via deletion of nodes as follows.

1. The addition process. With rate r, a new node
is added and it links to a randomly selected node
(Fig. 1). This is an egalitarian attachment process
as the new node is equally likely to link to any one
of the existing nodes.

2. The deletion process. With rate 1, a randomly
selected node (together with its outgoing link) is
deleted. The parent of the deleted node inherits
all the incoming links of the deleted node (Fig. 2).
This inheritance mechanism preserves ancestral re-
lations as is the case in phylogenetic trees: when a
species goes extinct, its immediate descendants are
linked to its immediate ancestor.

We stress that the addition process and the deletion pro-
cess are completely independent of each other and that in
the deletion process all links are removed with an equal
probability.

This addition-deletion process preserves the complex-
ity of the graph since nodes and links are added and
deleted in pairs. Thus, starting with a single seed node
and no links, the network has a tree structure. The seed
node can not be deleted (or the ancestry would be de-
stroyed) and therefore, the seed is the root of the tree.

The average total number of nodes at time t, N(t),
evolves according to dN/dt = r−1. Therefore, this quan-
tity grows linearly with time and since N(0) = 1,

N(t) = 1 + (r − 1)t. (1)

The total number of links, L(t), follows from L = N − 1
and therefore, L(t) = (r − 1)t. We restrict our attention
to the case of growing networks, r > 1. In this case, the
size of the network increases indefinitely with time and

fluctuations are negligible in the long time limit. The
total number of nodes grows diffusively and is subject to
large fluctuations in the limit r → 1.

III. THE IN-COMPONENT SIZE
DISTRIBUTION

The in-component of a node n is the set of all nodes
which are connected to n via a path of directed links. In
the context of a phylogenetic tree, the in-component is
simply the set of all descendants. Let Ck be the aver-
age number of nodes with an in-component of size k. In
our definition, the in-component includes the node itself,
and therefore k ≥ 1. The in-component size distribution
evolves according to

dCk

dt
=rδk,1+

r

N
[(k−1)Ck−1−kCk]+

k

L
[Ck+1−Ck] . (2)

The first three terms correspond to changes caused by
node addition. New nodes generate a new in-component
of size one and thus, the first term. In-components grow
by one when a node links to any of the nodes in that in-
component and the next two terms account for this aug-
mentation. The corresponding attachment rate is the ad-
dition rate r normalized by the total number of nodes N .
The last two terms correspond to node deletion. Deletion
of any one of the k links in an in-component of size k +1
generates an in-component of size k and hence the gain
term. Similarly, deletion of any one of the k nodes in an
in-component of size k decreases the in-component size
by one and hence the loss term. All nodes except for the
root may be deleted and accordingly, the deletion rate
is normalized by the total number of links L. By sum-
ming equations (2) one can verify that the total number
of nodes N = 1 +

∑

k≥1 Ck satisfies dN/dt = r − 1. We

stress that Eq. (2) is exact.
We are interested in the long time asymptotics where

the difference between the total number of nodes and the
total number of links is negligible. Therefore, we replace
L with N in (2). We also make the transformation

Ck = Nck (3)

where ck is the fraction of nodes with in-component de-
gree equal to k and

∑

k≥1 ck = 1. We seek stationary

solutions (dck/dt = 0) for which the distribution func-
tion ck satisfies the difference equation

(r−1)ck =r [δk,1+(k−1)ck−1−kck]+k(ck+1−ck). (4)

The tail of this distribution can be obtained using a con-
tinuum approximation, that is, through replacement of
differences with derivatives: ck+1 − ck → dc/dk, etc.
This change transforms the difference equation (4) into
the differential equation

r
d

dk
(k c) − k

dc

dk
+ (r − 1)c = 0. (5)



3

The solution of this equi-dimensional equation is a power-
law

ck ' B k−β , β = 2 +
1

r − 1
, (6)

as k → ∞. Thus, the in-component size distribution
has a power-law tail. The exponent 2 ≤ β < ∞ varies
continuously with the addition rate. The characteris-
tic exponent is minimal, β = 2, for the well-understood
case of random recursive trees (r → ∞) where deletion
is irrelevant [22–27]. The exponent diverges in the more
interesting limit of marginally growing networks (r → 1)
where deletion is as strong as addition.

Addition-deletion networks differ from strictly grow-
ing networks where the exponent characterizing the in-
component size distribution is independent of the details
of the attachment mechanism, β = 2 [26]. Thus the dele-
tion process qualitatively changes the network structure.

The moments Mn =
∑

k knCk provide complementary
information about the in-component size distribution. Of
course, M0 = N − 1. The first moment satisfies

dM1

dN
=

r − 2

r − 1

M1

N
+

r + 1

r − 1
, (7)

as seen by summing (2). Equation (7) describes the evo-
lution as a function of the total number of nodes rather
than time. Since we are interested in the asymptotic
behavior, we again replace L with N in (2). Solving
Eq. (7), we find that the first moment is proportional
to the number of nodes, M1 = (1 + r)N . Hence the av-
erage in-component size is linear in the addition rate,
〈k〉 = 1 + r.

Similarly, the second moment obeys

dM2

dN
=

2r − 3

r − 1

M2

N
+

r + 3

r − 1

M1

N
+ 1. (8)

There are three types of asymptotic behavior

M2 '











(r2+5r+2)
2−r N 1 < r < 2;

16N ln N r = 2;

κN
r−2

r−1 r > 2.

(9)

The proportionality constant κ depends on the initial
conditions. These asymptotic behaviors are consistent
with the algebraic decay (6): the second moment grows
linearly when β > 3, it increases super-linearly when
β < 3, and it acquires a logarithmic correction in the
marginal case β = 3.

The generating function

F (x) =

∞
∑

k=1

ckxk (10)

contains complete information about the in-component
size distribution. Normalization implies F (1) = 1 and
since c0 = 0, then F (0) = 0. Multiplying Eq. (4) by xk
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FIG. 3: The fraction of dangling nodes c1 versus inverse of
the addition rate 1/r (solid line). Also shown is the large-r
asymptotic behavior c1 = 1

2
+ 1

12r
(dashed line).

and summing over k, we arrive at a first order differential
equation for the generating function

(x−1)(rx−1)F ′(x)+
(

1 − r − x−1
)

F (x)+rx = 0 (11)

where the prime denotes differentiation with respect
to x. The homogeneous part of equation (11) ad-
mits the solution x(1 − x)β−1|rx − 1|−β . We make
the transformation F (x) = x(1 − x)β−1(rx − 1)−β a(x)
when 1/r < x < 1, and then the auxiliary function a(x)
satisfies a′ = r (1 − x)−β(rx − 1)β−1. Integration of this
equation yields the generating function

F (x) = r
x(1 − x)β−1

(rx − 1)β

∫ x

1/r

dy
(ry − 1)β−1

(1 − y)β
(12)

in the range 1/r < x < 1. The lower limit of integra-
tion was chosen to assure that F (1/r) is finite. One can
verify that limx→1 F (x) = 1 in agreement with the nor-
malization requirement. A similar calculation gives the
generating function in the range 0 < x < 1/r

F (x) = r
x(1 − x)β−1

(1 − rx)β

∫ 1/r

x

dy
(1 − ry)β−1

(1 − y)β
. (13)

The large-k behavior is encoded in the x → 1 behavior
of the generating function. First, we confirm the power-
law tail (6) by using (12). Second, we obtain the corre-
sponding proportionality constant

B = Γ(β)(β − 1)β . (14)

The appendix details the analysis leading to this result.
Conversely, the small-k behavior is reflected by the

x → 0 behavior of the generating function. The fraction
of dangling nodes, that is, nodes with no incoming links,
is given by c1 = limx→0 F ′(x) and by differentiation of
the generating function (13) we readily find

c1 =

∫ 1

0

dy (1 − y)β−1(1 − y/r)−β . (15)
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The integral can be expressed via the hypergeometric
function, c1 = β−1F (β, 1;β + 1; r−1), or alternatively as
the power series c1 =

∑

k≥0(k + β)−1 r−k. The quantity
c1 is a monotonically decreasing function of the addition
rate r and is roughly linear in 1/r (figure 3). It is max-
imal for marginally growing networks (see subsection A
below),

lim
r→1

c1 = eE1(1) = 0.596347 . . . , (16)

where E1(x) =
∫∞

x
dzz−1e−z is the exponential integral

[28]. The fraction of dangling nodes is minimal for ran-
dom recursive trees, limr→∞ c1 = 1/2. In general, over
half of the nodes are dangling nodes.

The in-component size distribution can be cal-
culated recursively for small k by using (4),
c2 = r(2c1 − 1), c3 = r [(6r + 1)c1 − (3r + 1)], etc.

We now investigate the limits r → 1 and r → ∞ in
detail.

A. Marginally Growing Networks

The recursion relation (4) becomes

ck+1 = δk,1 + (k − 1)ck−1 − 2kck + (k + 1)ck+1 (17)

for marginally growing networks (r → 1). Repeating
the steps leading to (5) yields the second order linear
differential equation

d2

dk2
(kc) − dc

dk
− c = 0. (18)

The tail of the in-component size distribution has a
stretched exponential tail

ck ∼ k−1/4 e−2
√

k, (19)

a result that can be obtained using the WKB technique.
This sharp decay is consistent with the divergent β.

To find the generating function, we repeat the steps
leading to (12). The governing equation (11) becomes
(x−1)2F ′−x−1F +x = 0, and the solution of this equa-

tion is F (x) = x
1−x e

1

1−x

∫ 1−x

0
dy
y exp

(

− 1
y

)

. The gener-

ating function can be expressed in terms of the exponen-
tial integral

F (x) =
x

1 − x
e

1

1−x E1

(

1

1 − x

)

, (20)

from which the fraction of dangling nodes (16) follows.

B. Random Recursive Trees

The second limiting case, r → ∞, corresponds to ran-
dom recursive trees. Now, the in-component size distri-
bution satisfies the recursion equation

(k + 1)ck = (k − 1)ck−1 + δk,1. (21)

Unlike in the general case, this simpler equation can be
solved recursively starting at k = 1: c1 = 1

1·2 , c2 = 1
2·3 ,

c3 = 1
3·4 , etc. We thus recover the well-known result [26]

ck =
1

k(k + 1)
. (22)

Alternatively, one can obtain the distribution from the
generating function F (x) = 1 + 1−x

x ln(1 − x).

IV. THE HEIGHT DISTRIBUTION

Another important structural characteristic is the
height of a node, that is, the number of links separat-
ing a given node from the root [29, 30]. Let Hk(t) be the
average number of nodes with height k at time t. This
quantity evolves according to

dHk

dt
=

r

N
Hk−1 +

k

L
(Hk+1 − Hk) (23)

for k ≥ 1. The initial condition is Hk(0) = δk,0 and
the boundary conditions are H0 = 1 and H−1 = 0. The
first term on the right-hand side accounts for gain due to
node addition and the next two terms describe changes
due to node deletion. The factor k reflects that deletion
of a node of height k reduces the heights of all of its
descendants by one. Again, the addition and the dele-
tion rates are normalized by the total number of nodes
and the total number of links, respectively. One can ver-
ify that the total number of nodes N =

∑

k Hk satisfies
dN/dt = r − 1.

Following the above analysis of the in-component size
distribution, we study the long time asymptotic behav-
ior of hk, the fraction of nodes with height k, using the
transformation

Hk = Nhk. (24)

Normalization implies
∑

k hk = 1 and the boundary con-
dition is now h0 = 0 since H0 = 1. Let us substitute (24)
into the rate equation (23). The distribution function hk

satisfies the recursion relation

r(hk − hk−1) + (hk+1 − hk) = (k + 1)hk+1 − khk. (25)

This equation was obtained by adding Hk+1 to both side
of (23).

In this case, it is convenient to use the exponential
generating function, defined via

G(z) =

∞
∑

k=0

hkekz. (26)

Multiplication of the recursion relation (25) by ekz and
summation over k leads to the first order ordinary differ-
ential equation

dG

dz
= G(z)(1 + rez). (27)
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The generating function is found by integration of this
equation subject to the boundary condition G(0) = 1,

G(z) = ez+r(ez−1). (28)

Using the definition (26) we find that the height distri-
bution function is Poissonian

hk = e−r rk−1

(k − 1)!
. (29)

The moments of the height distribution
mn =

∑

k knhk can be found by differentiation
of the generating function (28). For instance,
m1 = G′(0) = 1 + r, and therefore the average
node height is equal to the average in-component size,
〈k〉 = 1 + r. Similarly, fluctuations in the height are ob-
tained from the second moment m2 = c′′(0) = r2+3r+1,
and hence, the variance is

〈k2〉 − 〈k〉2 = r. (30)

This variance is sufficient to characterize the behavior in
the vicinity of the average, where the Poissonian height
distribution becomes Gaussian.

We can immediately deduce a number of characteris-
tics using the height distribution. There are Hk nodes
at height k with incoming links from the Hk+1 nodes at
height k + 1. Thus, the average in-degree Ik of nodes at
height k is Ik = Hk+1/Hk. Using H0 = 1 and (29) we
find

Ik =

{

Ne−r k = 0;

r k−1 k > 0.
(31)

The second result shows that the average degree is in-
versely proportional to the height.

The root, with its macroscopic degree, is the most con-
nected node whereas all other nodes have a microscopic
degree. Hence, the root is a giant hub. The degree of
the root is maximal for marginally growing networks,
limr→1 I0 = Ne−1, and it decreases indefinitely as r in-
creases. Therefore, deletion must be responsible for this
condensation phenomena. Indeed, since the attachment
rate to each node is 1/N , addition can be responsible for
at most ln N of the Ne−r connections as is the case for
random recursive trees [24–26]. We conclude that emer-
gence of the giant hub is due to deletion.

Consider now the highest node. The maximal height
kmax is determined from the extreme statistics criterion
Hkmax

∼ 1. Using the Poisson distribution (29) and the
Stirling formula k! ∼ (k/e)k, the highest node grows very
slowly with the network size, kmax ≈ ln N/ln(ln N). Re-
markably, the maximal height is independent of the ad-
dition rate r.

Asymptotically, the diameter of the network D is twice
the maximal height

D ≈ 2
ln N

ln(ln N)
. (32)

For strictly growing random trees, the diameter exhibits a
logarithmic growth independent of the attachment mech-
anism, D ∼ ln N [26]. However, the diameter can be
affected by the topology. If every new node links to m
existing nodes, this strictly growing network is no longer
a tree (for m ≥ 2) and D ∼ ln N/ ln ln N . This result [31]
is again very robust, namely it holds for strictly growing
networks with reasonable attachment mechanisms and
for all m ≥ 2. Equation (32) shows that deletion qualita-
tively affects the growth of the diameter. Surprisingly,
despite their distinct topologies these strictly growing
networks and the addition-deletion networks have sim-
ilar diameters.

Finally, we address the average distance between two
nodes, 〈l〉. Since the degree of the root is proportional
to the total number of nodes N , a path connecting two
randomly selected nodes almost surely includes the root.
As a result, the average distance is asymptotically equal
to twice the average height 〈l〉 = 2(1 + r).

V. THE DEGREE DISTRIBUTION

In contrast with the in-component size distribution
and the height distribution, it is impossible to construct
closed equations for the degree distribution and we per-
form an approximate analysis.

When a node with in-degree j is deleted, the in-degree
of the parent i is augmented by j − 1. This is simply the
aggregation process [32]

(i, j)
i/(NL)−→ i + j − 1. (33)

The aggregation rate is proportional to the in-degree of
the parent node because any of the daughter nodes can
be deleted. The normalization factor NL reflects that
the probability of picking the deleted node is inversely
proportional to the number of nodes and the probability
of picking the parent node is inversely proportional to
the number of links.

Let Ak(t) be the average number of nodes with in-
degree k at time t (the out-degree is always one). The
total number of nodes and the total number of links are
given by N =

∑

k Ak and L =
∑

k kAk, respectively. As-
suming that the degrees of neighboring nodes are com-
pletely uncorrelated, the quantity Ak obeys the nonlinear
rate equation [33, 34]

dAk

dt
= rδk,0 +

r

N
(Ak−1 − Ak) (34)

+
1

NL





∑

i+j=k+1

iAiAj − (kN + L)Ak



 .

The initial condition is Ak(0) = δk,0 and the bound-
ary condition is A−1(t) = 0. The first three terms
represent addition events. These terms are linear and
thus, exact. The last three terms account for deletion
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FIG. 4: The degree distribution for the aggregation process
and for the addition-deletion network. Shown are results of
one Monte Carlo simulation run with 107 nodes and r = 4.
Roughly 90% of the nodes have a degree smaller or than
k = 10.

events. These terms are non-linear as they represent
two node interactions. Moreover, the gain term has a
convolution structure, reflecting the aggregation process
(33). Of course, the aggregation process becomes ex-
act in the limit r → ∞ where deletion becomes irrele-
vant. By summation of the rate equation (34) we recover
dN/dt = dL/dt = r − 1.

Following our above analysis, we study the fraction of
nodes with in-degree k, ak. Making the transformation
Ak = Nak, the degree distribution satisfies

(k + 2r)ak = rδk,0 + rak−1 +
∑

i+j=k+1

iaiaj . (35)

We analyze this hierarchy of equations using the gen-
erating function U(x) =

∑

k akxk. The normalizations
∑

k ak =
∑

k kak = 1 imply U(1) = U ′(1) = 1. By mul-
tiplying the recursive equations (35) by xk and summing
over k, we find that the generating function obeys the
nonlinear ordinary differential equation

(x − U)
dU

dx
= r(x − 2)U + r. (36)

This equation is consistent with the normalization con-
ditions U(1) = U ′(1) = 1.

The moments of the degree distribution defined by
mn =

∑

k akkn are obtained by successive differentiation
of the generating function. In particular, the high-order
moments grow rapidly although they do remain finite
(appendix B)

mn ∼
[

r

(r − 1)2

]n

(n!)2, (37)

as n → ∞. Using these asymptotics we deduce (see Ap-
pendix B) that the tail of the degree-distribution decays
as a stretched exponential

ak ∼ e−λ
√

k (38)
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FIG. 5: The tail of the degree distribution for the addition-
deletion network. The simulation results were obtained from
103 independent realizations in a network with 107 nodes and
r = 4. The decay exponent is γ = 2.45 ± 0.05

with λ = [2(r − 1)]/
√

r.
How well does this approximation compare with

addition-deletion networks? In addition-deletion net-
works, the root has a macroscopic degree. In other words,
it is a condensate that contains a finite fraction of all
nodes. In the aggregation process (33) all clusters are
finite, as seen from U ′(1) =

∑

k kak = 1 [34]. This is
a consequence of the fact that all nodes are treated in
the same way. Introducing a fixed node that can not be
deleted should significantly improve the approximation.

We also examined the degree distribution using Monte
Carlo simulations of the aggregation process (33) and the
addition-deletion process. We find that when the degree
is very small, the aggregation process approximates the
addition-deletion process very well (Figure 4). For small
degree this agreement holds independent of r. However,
this approximation is poor when the degree is large.

For addition-deletion networks, the degree distribution
follows a power law behavior (Figure 5)

ak ∼ k−γ (39)

as k → ∞. Our approximate approach neglects degree-
degree correlation. The fact that our approximate ap-
proach is accurate at small degrees but inaccurate at
higher degrees indicates that degree-degree correlations
are negligible for small degrees but substantial for large
degrees. Indeed, highly connected nodes are long lived
and thus, involve strong memory.

Addition-deletion networks can be simulated using an
efficient algorithm that is linear in the network size.
Throughout the growth process we keep track of all
nodes, whether they have been deleted (passive nodes)
or not (active nodes). In an addition event, an active
node is added and it links to a randomly selected ac-
tive node. In a deletion event, an active node is marked
passive. When the required network size is reached, pas-
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sive nodes are removed in reverse chronological order to
preserve the ancestral relations.

Simulations of the aggregation process are performed
as follows. The system consists of aggregates, each with a
given size. In an addition step, an aggregate of size zero is
added and simultaneously, the size of another, randomly
chosen aggregate increases by one. In a deletion step one
aggregate is chosen with probability proportional to its
size and it merges with another randomly chosen aggre-
gate according to (33).

VI. SUMMARY

We have studied networks which undergo a biased
growth — new nodes are added at a certain rate and old
nodes are deleted at a smaller rate in such a way that
the ancestry is preserved. This growing network model
is relevant to biological and technological networks that
preserve ancestral relations between nodes. Our main
conclusion is that it is possible to characterize the struc-
ture of such networks analytically. For instance, the in-
component size distribution has a power-law tail and the

characteristic exponent varies continuously with the ad-
dition rate. We have also shown that the height dis-
tribution obeys Poisson statistics. Additional properties
including the fraction of dangling nodes and the average
degree as a function of height have been obtained as well.

Interestingly, the addition-deletion process results in
a giant hub that is connected to a finite fraction of the
nodes in the system. This fraction decreases to zero as
deletion becomes weaker, showing that the deletion pro-
cess causes this condensation phenomena.

We have also seen that the degree distribution evolves
by an aggregation process since the parent node inherits
all incoming links of a deleted node. Treating the under-
lying aggregation process as completely random is valid
only at small degrees because degree-degree correlations
become significant at large degrees. Constructing closed
equations for this aggregation process from which the
degree distribution can be calculated is an outstanding
challenge.
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APPENDIX A: DERIVATION EQ. (14)

The tail of the in-component size distribution can be
obtained from the x → 1 asymptotics of the generating
function F (x). Let us consider for example the power-
law tail ck ' Bk−2 as k → ∞. In this case, the leading
behavior of the derivative of the generating function is

dF (x)

dx
=

∑

k

kckxk−1 ' B
∑

k

k−1xk = −B ln(1 − x)

in the limit x → 1. Generally, the power-law decay (6)
implies

dβ−1F (x)

dxβ−1
= −B ln(1 − x) (A1)

as x → 1, for any positive integer β.
To evaluate this derivative, we rewrite the generating

function (12) using the transformation z = (β−1)(1−y)

F (x)=rβ x(1 − x)β−1

(rx − 1)β

∫ 1

(β−1)(1−x)

dz
(1 − z)β−1

zβ
. (A2)

For arbitrary positive integer β, the integral is evaluated
by performing β successive integration by parts

F (x)=
xPβ−1(x)

(rx − 1)β
+(−r)β x(1 − x)β−1

(rx − 1)β
ln(1 − x) (A3)

where Pn(x) is a polynomial of degree n.
Differentiating the generating function (A3) β−1 times

and noting that the second term dominates in the x → 1
limit, we obtain

dβ−1F (x)

dxβ−1
' −(β − 1)!

(

r

r − 1

)β

ln(1 − x). (A4)

By comparing this expression with (A1) we obtain the co-
efficient B = Γ(β)(β − 1)β for all integer β ≥ 2. Finally,
we use analytic continuation and extend this result to
arbitrary β.

APPENDIX B: DERIVATION OF (37) AND (38)

We obtain the large-k behavior of the degree distribu-
tion using the x → 1 behavior of the generating func-

tion U(x). Differentiating equation (36) n times and set-
ting x = 1 gives a recursion relation for the derivatives
Un = dnU(x)/dxn|x=1

Un =
r n(n + r)

(r − 1)2
Un−1 +

1

r − 1

n−3
∑

m=2

(

n

m

)

Un−mUm+1.

The first two coefficients are U0 = U1 = 1. Only the first
term in the recursion equation is relevant asymptotically
and therefore,

Un

Un−1
→ r

(r − 1)2
n2 (B1)

as n → ∞. Eq. (37) is obtained by noting that the
coefficients

Un =
∑

k≥0

k(k − 1) . . . (k − n + 1)ak

are asymptotically equivalent to the moments, Un ∼ mn.

The large-n behavior of mn is computed as follows:

mn ∼
∫

dk knak

∼
∫

dk exp
(

n ln k − λ
√

k
)

∼ exp
[

2n ln(2n/λe)
]

∼
(

2

λ

)2n

(n!)2. (B2)

In the first line we replaced the summation by in-
tegration, and in the second we used the presumed

asymptotic ak ∼ e−λ
√

k. The third line was obtained
by using the steepest descent method — the func-
tion f(k) = n ln k − λ

√
k is maximal at k∗ = (2n/λ)2.

The fourth line was obtained using the Stirling formula
n! ∼ (n/e)n. Finally, by comparing equations (B2) and
(37), we obtain the tail behavior (38) [35].


